MEchanical Dlode Resonant Rectifying Actuator (MEDIRRA)

Presented by:

George A. Lesieutre

Penn State University

DARPA CHAP Kickoff Baltimore, 28 June 00

MEDIRRA Overview

- Phase II Objective
 - Piezoelectric actuator with power density and efficiency that exceeds current EM technology
 - Enable agile high speed missile mission
- Phase I Scope
 - Actuator / Motor Requirements
 - Missile application, commercial manufacturing
 - High-Power Motor and Electronics
 - Concepts, modeling, mech. diodes (reverse, linear)
 - Regenerative power electronics
 - Motor Fabrication, Testing, Assessment

Builds on DARPA SAMPSON Technology

Angular Velocity (RPS)

6.00

8.00

MEDIRRA Schedule

MEDIRRA Team

- Penn State (Center for Acoustics and Vibration)
 - Piezoelectric motor technology, mechanical diodes
 - Gary Koopmann, Eric Mockensturm
- Virginia Tech (Center for Power Electronics Systems)
 - Efficient regenerative drive electronics
 - Doug Lindner
- Boeing Phantom Works (St. Louis)
 - Aerospace (missile) applications; (DARPA SAMPSON lead)
 - Ed White
- MPC Products Corp.
 - Aerospace actuator supplier; (AW&ST 1999 Tech. Innovation)
 - Darrin Kopala
- Torrington (mechanical diode technology)

Progress

- Expect to be under contract 1 JUL 2000
 - Army Research Office
 - Technical Monitor: Dr. Gary Anderson

Technology Transition

- MPC Products Corp.
 - Aerospace actuators
 - Many potential customers

- Boeing Phantom Works (St. Louis)
 - Aerospace applications
 - Transition integrated smart structures to Boeing products

SAMPSON Rotary Motor

Central hub

Rotary roller clutches

Driven shaft

Mass

Bimorph beam

Scaling of Power Density

- Optimum length scale for high power density
 - If too long, too massive
 - If too short, backlash/friction limit holding capability, speed
 - As short as practical to run at high step rates
- Reducing backlash / losses essential
- Fixed frequency electronics
 - Compact

Multi-device coord for high power at load scale

Performance Targets (pre-budget adjustment)

- ACTUATOR = package (motor, electronics, sensor, controller)
 - SOA ~ 100 W/kg
- MOTORS
 - Typical AC EM:
 - 80 W/kg (continuous)
 - 50-80% efficiencies
 - Best brushless DC:
 - 900 W/kg (continuous);
 - 2800 W/kg (intermittent)

Power And Mass For Some Commercial AC Motors

TARGETS

- F2 ACTUATOR: 1000 W/kg; F2 MOTOR: 2000 W/kg
- F1 MOTOR: 300 W/kg
- F2 EFFICIENCY: Drivers: 90%; Motors: 90%

Technical Features

- Principle of operation
 - Rectification / accumulation of resonant oscillation
 - MECHANICAL DIODE
- High power density
 - High frequency operation (small)
 - Reversible diode: no transmission
 - Efficient power electronics
- Volumetric conformability
 - Unusual form factors
 - In-fin actuation

Technical Issues

Mechanical Diodes

- Reversible
- Linear vs. rotary
- Minimizing backlash, losses
- Reliability

Power Electronics

- Mass, efficiency
- Power bus step-up, power flow
- High Frequency Oscillator
 - Stack vs. bimorph
 - Bimorph mass, mode shape
 - Sizing and coordination (specific power vs. application)

Bimorph Drive

MEDIRRA Summary

MEchanical Dlode Resonant Rectifying Actuator

- Builds on DARPA SAMPSON technology
 - High torque piezoelectric motor
- Experienced team
 - Penn State, Virginia Tech, Boeing, MPC
- Technology development
 - High specific power
 - Mechanical diode
 - Resonant drive
 - Efficient power electronics
- Technology transition
 - Aerospace actuators and applications